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Assessment model of cutting tool condition 
for reAl-time supervision system

model oceny stAnu nArzędziA skrAwAjącego 
dlA systemu nAdzoru w czAsie rzeczywistym 

Further development of manufacturing technology, in particular machining requires the search for new innovative tech-
nological solutions. This applies in particular to the advanced processing of measurement data from diagnostic and 
monitoring systems. The increasing amount of data collected by the embedded measurement systems requires develop-
ment of effective analytical tools to efficiently transform the data into knowledge and implement autonomous machine 
tools of the future. This issue is of particular importance to assess the condition of the tool and predict its durability, 
which are crucial for reliability and quality of the manufacturing process. Therefore, a mathematical model was de-
veloped to enable effective, real-time classification of the cutting blade status. The model was verified  based on real 
measurement data from an industrial machine tool.

Keywords: predictive maintenance, logistic regression, elasticnet, maximum likelihood method, ROC, 
AUC.

Dalszy rozwój inżynierii produkcji, w szczególności obróbki skrawaniem, wymaga poszukiwania nowych innowacyj-
nych rozwiązań technologicznych. Dotyczy to w szczególności zaawansowanego przetwarzania danych pomiarowych 
pochodzących z systemów diagnostycznych i monitorujących. Rosnąca ilość danych gromadzonych przez wbudowane 
systemy pomiarowe wymaga opracowania skutecznych narzędzi analitycznych, aby efektywnie przekształcać dane w 
wiedzę i wdrażać autonomiczne obrabiarki przyszłości. Kwestia ta ma szczególne znaczenie dla oceny stanu narzędzia 
i przewidywania jego trwałości, które są kluczowe dla niezawodności i jakości procesu produkcyjnego. Dlatego opra-
cowano nowy model matematyczny, którego zadaniem jest skuteczna klasyfikacja stanu ostrza narzędzia skrawającego 
realizowana w czasie rzeczywistym. Opracowany model został zweryfikowany na podstawie rzeczywistych danych po-
miarowych z przemysłowej obrabiarki.

Słowa kluczowe: predykcyjne utrzymanie ruchu, regresja logistyczna, elasticnet, metoda największej 
wiarygodności, ROC, AUC.

1. Introduction

Machining as a manufacturing technology has invariably played 
a significant role in the manufacturing processes of many enterprises. 
It is estimated [3] that expenditure on machining account for approxi-
mately 5% of the GDP in the developed countries. Therefore, ma-
chining technology is constantly evolving. It results from numerous 
research concerning i.e. the accuracy of the machined parts [5], or the 
stability of the high-speed machining process [30]. 

Despite a number of research and innovations regarding tech-
nologically advanced cutting tools, or more demanding materials to 
be machined, further striving to increase productivity and quality 
decreasing total costs at the same time, requires search for innova-
tive solutions, including those of an optimizing character. Therefore, 
recently, the number of scientific research in the field of machining 
is growing. They concern advanced processing of collected measure-
ment data coming from diagnostic and monitoring systems of tech-
nological machines. On the one hand, this is the result of the rapid 
development of measurement and analytical techniques [10, 17, 23], 

and the growing importance of broadly understood durability and re-
liability. On the other hand, it is the result of expectations related to 
the implementation of solutions based on the idea of Industry 4.0. 
Machine to machine communication, smart technologies, or the need 
to develop cyber-physical systems (CPS), taking into account the 
broadly understood principle of sustainable development [14-16], 
pose a number of new research challenges. According to Lee at al. 
[22], recent advances in manufacturing industry have paved way for 
a systematical deployment of CPS systems, within which informa-
tion from all related perspectives is closely monitored and synchro-
nized between the physical factory floor and the cyber computational 
space. This requires advanced information analytics for networked 
machines, which finally will be able to perform more efficiently and 
collaboratively. 

Currently available advanced technological solutions in measure-
ment sensors and data collection and processing systems [24-26, 28, 
29] as well as widespread use of industrial computer networks open 
up an opportunity for potential future smart factories. However, the 
increasing amount of collected data requires effective analytical tools 
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[6]. Vast amount of research are also conducted in this area, how-
ever, they are mainly theoretical considerations, where new methods 
or mathematical models are usually verified only based on simulation 
data. As Arrazola et al. [3] noted that industry application of mathe-
matical models is very limited in manufacturing technology analyzed 
from the point of view modelling of metal machining operations, due 
to the fact that direct application of currently available predictive 
models for specific operations on the shop floor is limited, as most 
models developed by researchers are only laboratory-validated, and 
not shop floor-tested. Taking into account the above factors as well 
as the growing role of reliability and quality of the manufacturing 
process, in which the durability of the cutting tool plays a key role, 
a mathematical model was developed to effectively classify the cut-
ting blade. The model was verified based on actual measurement data. 
This way contribution to industrial data elaboration for predictive 
maintenance was successfully provided.

2. Problem formulation

The study primarily aimed to determine the cutter state. The an-
swer to the question if the cutter is sharp or not is necessary to define 
its function, since the response variable is qualitative. Thus the values 
of this function should be included in a set of two elements describing 
the possible states of the cutter. The response variable has a categori-
cal value in the case considered. Prediction of cutter state based on 
data obtained from sensors (accelerometers, microphones, etc.) can 
be referred to as classification problem. 

Numerous classification techniques (classifiers) might be used to 
predict inclusion in the appropriate class. Logistic regression was used 
to determine the cutter state. In logistic regression allows to calculate 
the probability with which the response variable belongs to appropri-
ate category. Therefore, instead of determining cutter state, the proba-
bility of each possible state was estimated. In other words, application 
of logistic regression allows to determine the distribution of response 
variable based on observation of input variables. Some observable 
input variables are strongly correlated which will be discussed later in 
the paper. The elasticnet method was used to minimize this problem. 
The following subsections present the mathematical aspects required 
to build a classifier of cutter state.

2.1. Logistic regression

Let us consider the data set, where the realization of the response 
variable belongs to a binary set. For any finite element we analyze the 
training set D x yi i i n

= ( ){ }( ) , 1
, where x i i n( ){ }1

 denotes a series 

of input variables, { }1i i ny   is a series of response variable, where 
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Observing the signal x Ri
m

( ) ∈  obtained from sensors, it is nec-
essary to classify the cutter state. The task is to find such a classifier 

{ }: 0,1mf R → , which would allow to classify the cutter into catego-
ries 1y = or 0y =  based on observation mx R∈ .

Let ( ), ,F PΩ  be a probability space. On this space a random 
variable Y  with binomial distribution, i.e. { }: 0,1Y Ω→  (see e.g. 
[27]) is defined. In the presented case logistic regression is a regres-
sion model, where response variable Y  has a binomial distribution. 
Logistic regression (see e.g. [4, 9, 13]) describes probability of reali-
zation of dependent variable Y  based on observation of input vari-
ables X . Therefore, it is necessary to determine success ( )1|P Y X=  
and defeat  ( )0|P Y X=  probabilities accordingly. In literature [4, 12] 
the formula: 

 ( ) ( )
( )

( )
( )

1 1|
1 1|0

P Y X P Y X
X

P Y XP Y X
= =

Θ = =
− ==

 (1)

is called the odds. Thus, the odds is defined as the ratio of success 
probability to defeat probability. The aim of logistic regression con-
sist in determining the probability of success ( ) ( )1|p X P Y X= =  
based on observation X . Because the probability of success is 
( ) ( )0,1p X ∈ , therefore from formula (1) the odds is ( ) ( )0,XΘ ∈ ∞

but  ( )( ) ( ),ln XΘ ∈ −∞ ∞ . The logarithm of odds is called log-odds 
or logit.
For models of logistic regression the linear dependencies between 
logit and input variables are analyzed: 
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p X
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where β β β= …( )∈1, , m
mR . When linear system (2) contains an in-

tercept, then in matrix X  the column that corresponds to intercept 
contains ones.  From (2) a success probability is calculated as fol-
lows: 
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e

X
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The maximum likelihood method is usually used to estimate the 
unknown parameters β in logistic regression (3). Thus the likelihood 
function is defined as:

 L Y X p x p x
i

n

i
y

i
yi i

β β β, , , ,( ) = ( ) − ( )( )
=

( ) ( )
−

∏
1

1
1 . (4)

The application of maximum likelihood method consists in solv-
ing the task:

 max L Y X
β

β , ,( ) . (5)

As a result the estimators of  unknown parameters β  for system 
(2) are obtained. Instead of solving the task (4), the auxiliary task 
needs to be solved:

 maxl Y X
β

β , ,( ) , (6)

where the objective function is defined as the logarithm of likelihood 
function:
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To solve the auxiliary task (6) (determine the unknown param-
eters β ) Newton-Raphson algorithm was applied. Application of this 
algorithm follows that the unknown parameters β  are estimated it-
eratively. In the step 1j + the  estimators are determined from the 
formula:
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∂
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β

β , ∂

∂ ∂
( )

2l
Tβ β

β  denote a first and second partial deriva-

tives of the objective function (7).

2.2. Elasticnet

Usually the measurements obtained from sensors are correlated 
(referred to as the multicollinearity problem). If the input variables 
(predictors) in linear system (2) are correlated, the direct solution of 
the task (6) based on the application of Newton-Raphson algorithm 
does not bring about the expected effect. Additionally, the forecasts 
based on this model are unstable. Thus the problem depends on the 
selection of appropriate predictors, which should be included in the 
regression model (2). On the one hand, these predictors should in-
fluence the value of response variable, on the other they should not 
generate multicollinearity. 

In literature there are many techniques (e.g. singular value decom-
position, regularization, least angle regression) to solve the problem 
(6) of multicollinearity. One of possible ways to reduce multicolline-
arity between predictors is the application of the elasticnet method 
(see e.g. [12, 13]). This method consists in including the penalty, 
which depends on values of estimators, in objective function. This 
technique implies a shrinkage of estimators of unknown parameters. 
From above when predictors are correlated then we solve the task:

 max y x ln e P
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where 0λ >  and value ( )Pα β denote the penalty. For   0 1α   the 
penalty ( )Pα β  is defined as a linear combination of vector norm of 
estimators β  in spaces 1L , 2L  and given by the formula 

P L Lα β
α
β αβ( ) = −

+
1

2 2 1
. If 0α =  , then a classical Tikhonov regu-

larization (ridge regression) is used, while 1α = , then Least Absolute 
Shrinkage and Selection Operator (LASSO). The elasticnet is a con-
nection between ridge regression and LASSO. As will discussed later, 
the application of elasticnet method allowed to receive classifier based 
on logistic regression (2) with more accurate and stable detection of 
cutter state.

2.3. Acoustic signal analysis

Acoustic signal properties were identified by correlation analysis 
which is related to spectral analysis (see e.g. [11]). Therefore, the time 
series { }t t Nx ∈  were considered which denote acoustic pressure and 
is (weakly) stationary in a broad sense with realizations in the set of 
real numbers R . The autocovariance function of the time series is 
determined as follows:

 γτ τ= −( ) −( )+E x Ex x Ext t t t  (9)

and the autocorrelation function is determined as:

 rτ τγ
γ

=
0

 (10)

for any lag τ ∈N . Below two theorems are presented which can be 
helpful to distinguish acoustic signals.

Theorem 1 (Herglotz). Let γτ , τ ∈N  denote the autocovariance 
function of weakly stationary time series. There exists right continu-
ous and non decreasing function F : , , )−[ ]→ ∞[π π 0  such that 
F −( ) =π 0  and:

 γ ωτ
π

π
ωτ= ( )

−
∫ e dFi  (11)

The proof of Theorem 1 is given in [27]. The function 
F ω ω π π( ) ∈ −[ ], ,  is a spectral function, however if:

 F f s dsω
π

ω
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−
∫  (12)

the function ( )f s  is a spectral density function. The relationship be-
tween the  autocovariance function γτ , τ ∈N  and the spectral den-
sity function ( )f s  is given below.

Theorem 2. If the autocovariance function γτ , τ ∈N  has real-
ization in the set of real numbers, then the spectral density function  
f F ω ω π π( ) ∈ −[ ], ,  is defined as follows:
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The proof of Theorem 2 can be found e.g. [21, 27]. From theorem 
2 for needs to make classifier, each acoustic signal was identified by 
correlation sequence { }1 t krτ ≤ ≤ . The stationary property was checked 
for each acoustic signal by application Augmented Dickey-Fuller 
(ADF)  test (see e.g. [11, 18]). Additionally, the significance of cor-
relation sequence { }1 t krτ ≤ ≤ for acoustic signal { }t t Nx ∈   was analyzed 
by application of  Ljung-Box test (see e.g. [11]). 

3. Numerical example

The aim of research was to analyse the possibility of designing 
a classifier, which would recognize the cutter state. In order to de-
velop a classifier, 2173 signals (series of acoustic pressure) obtained 
from microphone were analyzed, where 937 cases were concerned 
for blunt cutters and 1236 for sharp cutters. Each series xt

j
t n{ }

≤ ≤1
 

had 16000 measurements ( 16000n = ) collected with 25 kHz sam-
pling frequency and was identified by sequence of correlation values  
r rj

t
j

t m
m= { } ∈ −[ ]

≤ ≤1
1 1,  for 0 2173j≤ ≤ . It was assumed that the 

maximal lag is equal to 200 ( 200m = ) [31]. Exemplary realization of 
signal and sequence of correlation is depicted on Figure 1.
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Remark 3. For each analyzed acoustic series xt
j

t n{ }
≤ ≤1

, 

0 2173j≤ ≤  an ADF test was performed. The results show that the 
probability of null hypothesis 0H  (the series is non-stationary) does  
not exceed 0.01 for every series. Hence, we accept that the series de-
scribing acoustic signals are stationary.

Remark 4. Additionally, Ljung-Box test was performed to ex-
amine the null hypothesis 0H , that elements of acoustic series 

xt
j

t n{ }
≤ ≤1

 , 0 2173j≤ ≤  are independent. The results show that for 

each of the analyzed series the probability of null hypothesis 0H  does 
not exceed 0.01, thus the elements in acoustic series are not independ-
ent. From above there exist significant correlations between the ele-
ments for lags 0τ ≥  )

As a result, learning dataset 

D r y r y jj
j

j m
j= ( ) ∈ −[ ] ∈{ } ≤ ≤{ }, : , , , ,1 1 0 1 1 2173  was created, 

where r rj
t
j

t m
= { }

≤ ≤1
 is a sequence of values of the autocorrelation 

function for j − th sample, 0jy =  for the sharp cutter and 1jy =  for 

the blunt cutter. Thus, observing the sequence  , the question if the 
cutter is blunt must be answered. For this purpose the elasticnet meth-
od was applied to estimate unknown parameters  in linear model (2) 
by solving the task (8). Additionally, 10-fold cross validation (see e.g. 
[12, 13]) was performed to validate stability of the obtained model 
(thereby to assess of accurately work of  model for data).

Below the reconstruction based on application of logistic regres-
sion is presented. For correlation sequence  of acoustic signal obtained 
from sensors the probability that the cutter is blunt is calculated as fol-
lows:

 ( )
ˆ

ˆ
ˆ 1|

1

r

r
eP Y r

e

β

β
= =

+
 (14)

where ˆ mRβ ∈  denotes the estimator of unknown parameters β  for 
logistic regression (2). 

Accordingly, for probability ( )ˆ 1|P Y r=  , the question of the cut-
ter state must be answered – if it is blunt or sharp, due to the cut-off  
level (threshold classification) [ ]0,1l∈ :

 
( )
( )

, 1| ,ˆ

, ˆ 1|

sharp forP Y r l
state

blunt forP Y r l

 = <= 
= 

 (15)

Main aim of classification of the cutter state is recognizing that 
the cutter is blunt. The accuracy (quality of identification) was as-
sessed for different thresholds 0 1l≤ ≤ . For this purpose the relative 
error was defined as  ratio number of incorrect detection to number 
of samples (fraction of incorrect detection). The relative error is 
complement of accuracy (calculated as 1 – accuracy) (see e.g. [1, 2, 

7]). Accuracy is a fraction of correct detection 
from model. Relative error and accuracy give 
a basic information about goodness of fit of 
classification model.  The smallest relative er-
ror corresponds to threshold 0.46. Figure 2 de-
picts the dependence between relative error and 
threshold. Below basic terminology and  ratios 
to describe the quality of binary classifier are 
presented. In this paper, Sharp class is treated 
as a negative example (N) and Blunt as a posi-
tive example (P). To create a confusion matrix 
we determine the following values: TP (True 
Positive) denotes number of sample with cor-
rect detection for blunt cutter, TN (True Nega-
tive) - number of sample with correct detection 
for sharp cutter, FP (False Positive) - number 
of sample where sharp cutter was recognized 

as blunt (number of false alarms), FN (False Negative) - number of 
sample where blunt cutter was recognized as sharp (number of miss).  
Basic ratios is calculated as follows: 

TP TNAccuracy
TP TN FP FN

+
=

+ + +
 , TPSensivity

TP FN
=

+
 , TNSpecificity

TN FP
=

+
,

TPPositivePredictiveValue
TP FP

=
+

 , TNNegativePredictiveValue
TN FN

=
+

  ,

TP FNPrevalence
TP TN FP FN

+
=

+ + +
 , TPDetectionRate

TP TN FP FN
=

+ + +
 , 

TP FPDetectionPrevalence
TP TN FP FN

+
=

+ + +
 , 

2
Sensivity SpecificityBalancedAccuracy +

= ,

FPFalseAlarmRate
TP FP

=
+  .

Table 1 presents a confusion matrix (identification result of cutter 

state). The relative error of classification is equal to ( )77 106
0.0842

2173
+

≈  

(below 8.5%), thus accuracy is 1 0.0842 0.9158− = . For cut-off level 
0.5, the relative error did not exceed 8.6%. Figure 3 presents boxplots 
(quantiles ¼ and ¾, median and outliers) of probability values ob-
tained by application (8) for cutters. 

Table 1. Confusion matrix for classification level 0.46

Reference: blunt Reference: sharp

Prediction: blunt 860 77

Prediction: sharp 106 1130

Table 2 presents identification ratios for logistic regression model. 
The sensitivity (recall or probability of detection) has been calculated 
as proportion of number of exact (relevant) recognitions for blunt cut-
ters to the number of samples which actually had blunt cutter. On the 
other hand the specificity has been calculated as proportion of number 
of exact (relevant) recognitions for sharp cutters to the number of 
samples which had sharp cutter. The positive predicted value (preci-

Fig.1 . Realization and autocorrelation for an acoustic signal xt
j

t n{ }
≤ ≤1
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sion) is a ratio of number of exact (relevant) recognitions for 
blunt cutters to the number of samples recognized as blunt. The 
precision characterizes a purity of performed classifier (purity 
in retrieval performance). The parameters presented in table 2 
are discussed thoroughly in [1, 2, 7, 8]. Additionally, McNe-
mar’s chi-squared test was performed for symmetry of rows and 
columns for confusion matrix presented in table 2. In presented 
case the McNemar’s chi-squared statistic is equal to 4.2842 
and p.value is 0.03847. It means that at a significant level 0.05, 
we have no basis to reject the null hypothesis. Additionally, κ
-statistic was calculated. κ -statistic presents the proportion of 
disagreements expected by chance that did not occur.  For rec-
ognition based on logistic regression model the parameter  κ  
is equal to 0.829.

Table 2. Basic ratios of quality for logistic regression model

Parameter Value

Accuracy 0.9158

Sensitivity 0.9178

Specificity 0.9142

Positive Predicted Value 0.8903

Negative Predicted Value 0.9362

Prevalence 0.4312

Detection Rate 0.3958

Detection Prevalence 0.4445

Balanced Accuracy 0.9160

False Alarm Rate 0.0858

Additionally, exact binomial test was also made. Null hypothesis 
maintains that the probability of success (recognition of blunt cutter) 
is consistent with prevalence (samples from training data, where the 

proportion of blunt cutters to all cutters is equal to 937 0.4312
2173

= ). 

At significant level 0.05 we have no basis to reject the null hypoth-
esis. 

Figure 3 illustrates the diagnostic ability of classifier based on 
logistic regression model (see e.g. [7]). Receiver Operating Charac-
teristic (ROC) curve shows the relationship between sensitivity and 
specificity for every possible cut-off levels. The diagonal line in Fig-
ure 3 represents a strategy of randomly guessing cutter state. Thus 
the presented classifier based on logistic regression is much better 
then guessing. The bend on the ROC curve corresponds to threshold 
of 0.465. Area under ROC curve (AUC) denotes general measure of 
predictiveness. The AUC value for classifier is equal to 0.916.

4. Summary

The extremely dynamic development of technology resulted in 
wide use of advanced computer systems and sophisticated diagnostic 
systems equipped with intelligent sensors. Monitoring the parameters 
of the technological process and diagnostics of key machines and 
production equipment means that each enterprise collects significant 
and constantly growing quantities of various types of data. Raw data 
obtained in this way is a large collection and usually difficult to use 
directly, requiring appropriate analytical methods. The collected data 
is, however, a resource of extremely valuable information, which after 
proper processing and inference should become knowledge, on the 
basis of which it is possible to increase the efficiency of the com-

pany’s operation and effectively build a competitive advantage.
Industrial data sets for the implementation of Industry 4.0 so-

lutions are the basis for the functioning of cyber-physical systems, 
meaning the automation of the processing of collected data. Their 
functioning requires the development of appropriate analytical tools, 
especially important for the efficient functioning of CMMS (Com-
puterized Maintenance Management Systems) class predictors. Pre-
dictive maintenance is a preventive maintenance method that uses 
a variety of techniques to inform the owner, service provider or op-
erator about the current and, preferably, future status of their physi-
cal resources. The issue of durability and reliability in machining is 
undoubtedly one of the most important issues also in the context of 
predictive maintenance and real-time monitoring of technological 
processes, especially due to the growing role of various diagnostic 

Fig. 2. Relative error dependence on cut level

Fig. 3. The result of cutter state detection

Fig. 4. Receiver operating characteristic curve
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and measurement systems, in which every numerically controlled ma-
chine tool is equipped. Therefore, the authors undertook the task of 
developing a solution enabling effective identification of the condi-
tion of the cutting tool, allowing further determination of the optimal 
moment of its replacement. Presented method gives a simple way to 
detect the cutter state. The study gives promising results - sensitivity 
and specificity exceed 0.9, furthermore precision is equal to 0.89 and 
false alarm rate is equal to 0.08. The presented analytical solution, 
verified on the basis of real data from an industrial machine tool, can 
be used as part of the system for recognizing the wear rate of the cut-
ting tool during the production process based on the analysis of an 

acoustic signal or any other symptoms. Obtaining sufficiently high 
effectiveness of identification, classification and forecasting for the 
needs of the advanced CMMS class system, however, requires further 
work. This issue is particularly important for the ongoing work [19, 
20] over an innovative prediction tool for failure using mathemati-
cal models selected autonomously by an intelligent algorithm based 
on information criteria, as well as forecast errors and forecast error 
indicators. As well as the work [31] aimed at developing algorithms 
for real-time diagnostics and predictions of the state of technological 
processes.
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